Journal of Catalysis 285 (2012) 92-102

Contents lists available at SciVerse ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters

Manuel Ojeda¹, Bi-Zeng Zhan², Enrique Iglesia^{*}

Department of Chemical Engineering, University of California and E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

ARTICLE INFO

Article history: Received 18 July 2011 Revised 13 September 2011 Accepted 14 September 2011 Available online 19 October 2011

Keywords: CO oxidation Au H₂O effect Mechanism Hydroperoxy

ABSTRACT

Kinetic and isotopic data are used to interpret the mechanistic role of gaseous H₂O molecules and of nonreducible (Al₂O₃) and reducible (TiO₂, Fe₂O₃) supports on CO oxidation turnovers catalyzed by small Au clusters (<5 nm). H₂O acts as a co-catalyst essential for O₂ activation and for catalyst stability in CO oxidation at near-ambient temperatures, but also inhibits rates via competitive adsorption at higher H₂O pressures. The effects of CO, O₂, and H₂O pressures on CO oxidation turnover rates, the absence of ${}^{16}O_2/{}^{18}O_2$ and ${}^{16}O_2/H_2{}^{18}O$ exchange, and the small H₂O/D₂O kinetic isotope effects are consistent with quasi-equilibrated molecular adsorption of CO, O₂, and H₂O on Au clusters with the kinetic relevance of H₂O-mediated O₂ activation via the formation of hydroperoxy intermediates (*OOH), which account for the remarkable reactivity and H₂O effects on Au clusters. These elementary steps proceed on Au clusters without detectable requirements for support interface sites, which are no longer required when H₂O is present and mediates O₂ activation steps. Rate enhancements by H₂O were also observed for CO oxidation on Pt clusters (1.3 nm), which is also limited by O₂ activation steps, suggesting H₂O-aided O₂ activation and *OOH species in oxidations involving kinetically-relevant O₂ activation. These intermediates have also been proposed to account for the ability of O₂/H₂O mixtures to act as reactants in alkene epoxidation on Au-based catalysts.

Published by Elsevier Inc.

JOURNAL OF CATALYSIS

1. Introduction

The catalytic oxidation of CO has been extensively used to probe mechanisms and site requirements in heterogeneous catalysis and to remove CO from combustion effluent and H₂-containing streams [1–3]. Au-based materials catalyze CO oxidation at sub-ambient temperatures when present as small Au clusters (<5 nm) dispersed on oxide supports (TiO₂, Fe₂O₃, Al₂O₃, etc.) [4–8]. The high reactivity of small Au clusters in CO oxidation catalysis has been variously attributed to the following: (i) low-coordination Au surface atoms, isolated Au atoms, or cationic Au species; (ii) electron transfer from the support to Au clusters; or (iii) supports that become active when placed in atomic contact with Au clusters [1]. The importance and relative contributions of these effects are controversial, and the specific evidence for each proposal remains equivocal and often contradictory.

Large differences in measured rates (>10-fold), in the observed effects of reactant and H_2O concentrations on such rates (kinetic order ranges of 0.02–1.01 and 0.07–0.46 for CO and O_2 , respectively), and in deactivation rates have been reported on Au

E-mail address: iglesia@berkeley.edu (E. Iglesia).

catalysts with similar cluster size, Au content, support material, and synthetic provenance [1,9]. The absence of consensus about these catalyst properties reflects, at least in part, the presence of adventitious H₂O at levels difficult to detect but consequential for catalysis. Previous studies have concluded that H₂O promotes [5,10,11], inhibits [12], or does not affect [13] CO oxidation catalysis. The most extensive studies [10,14] included Au clusters deposited on different supports (TiO₂, Al₂O₃, and SiO₂) and concluded that H₂O impurities in CO/O₂ reactants strongly increase CO oxidation rates, even at trace concentrations (0.1–1 ppm), which are undetectable by conventional analytical methods, and to very different extents on the various supports [14]. These H₂O effects have been attributed to the promotion of O₂ adsorption and/or dissociation, decomposition of unreactive carbonate deposits, and assistance in reducing inactive Au cations to Au⁰ by CO [7,11,14-17], but their respective contributions remain the subject of persistent speculation and active debate. Recent reports also show that increasing concentrations of hydroxyl groups favor CO oxidation rates, either in alkaline aqueous phase using Au/TiO₂ and Au/C catalysts [18] or in the gas phase with Au/SiO₂ catalysts doped with NaOH [19].

Every plausible sequence of CO oxidation elementary steps and active sites has already been proposed, based on direct or indirect evidence, without even a modicum of consensus and with the implication of structures ranging from cationic or metallic Au species in some cases, but not others, in chemical or physical synergy

^{*} Corresponding author. Fax: +1 510 642 4778.

¹ Present address: Institute of Catalysis and Petrochemistry (CSIC), C Marie Curie 2, 28049 Madrid, Spain.

² Present address: Chevron Corporation, Richmond, CA 94802, United States.

with reducible or non-reducible supports, and with H_2O acting as a promoter, participant, inhibitor, or spectator species [1,5,16,20–23]. The only complete sequence of plausible elementary steps supported by the comparison with rigorous rate data, in our assessment, involves parallel competitive and non-competitive adsorption of CO and O_2 and their reactions in kinetically-relevant steps [24–26]; this mechanistic proposal did not consider what is currently accepted as a critical and perhaps even essential role of H_2O in mediating CO oxidation catalysis at near-ambient temperature.

We provide here kinetic and isotopic evidence for a sequence of elementary steps for CO oxidation on stable Au catalysts with added H₂O, present as a co-catalyst essential for stable turnover rates. These steps are mediated by hydroperoxy species (*OOH), which may form on Au surfaces [27], and which account for the co-catalytic effect of H₂O on CO oxidation rates and on catalyst stability and for the ability of these materials to catalyze propene epoxidation with H₂O/O₂ mixtures [28]. These kinetic data were obtained under conditions of strict kinetic control and without detectable deactivation in the presence of H₂O as an essential component; the data and their mechanistic interpretation aim to resolve long-standing controversies that reflect, at least in part, the instability and mechanistic promiscuity imposed by uncontrolled and undetected concentrations of adventitious H₂O in catalytic solids and reactant streams.

2. Experimental methods

2.1. Catalyst preparation and characterization

Al₂O₃-supported Au clusters (denoted here as Au/Al₂O₃) were prepared by the deposition-precipitation (DP) methods [5,20]. Tetrachloroauric acid hydrate (0.24 g, HAuCl₄·*x*H₂O, 99.999%, Aldrich) was dissolved in doubly-distilled deionized H₂O (80 cm³) at 353 K. γ -Al₂O₃ (5 g, Alcoa) was treated in flowing dry air (1.67 cm³ s⁻¹ g⁻¹), UHP grade, Praxair) at 923 K for 5 h, and then dispersed in doublydistilled deionized H₂O (120 cm³) at 353 K. Au was deposited onto γ -Al₂O₃ surface at 353 K and a pH of 7 (adjusted with 0.5 M NaOH, >98%, Fluka) by stirring for 1 h. The resulting solids were rinsed and washed with doubly-distilled deionized H₂O (323 K) and dried at ambient temperature for 24 h. Samples were stored away from light without further treatment. The Au content was measured by inductively-coupled plasma emission spectroscopy (0.61% wt.; Galbraith Laboratories, Inc.). The mean diameter of these Au clusters $(3.5 \pm 1.2 \text{ nm})$ was determined by high-resolution transmission electron microscopy (TEM) and reported elsewhere [29]. Mean Au diameters (d_{Au}) were calculated using $d_{Au} = \sum n_i d_i^3 / \sum n_i d_i^2$, where d_i is the diameter measured from TEM images, and n_i is the number of Au clusters of diameter d_i . The pore size distribution was measured by N₂ adsorption-desorption at 77 K using a Micromeritics ASAP 2000 apparatus. Pore size distributions were obtained from these adsorption data using the Barrett-Joyner-Halenda (BJH) equation [30].

Three different portions of the Au/Al₂O₃ solids were treated in O₂/He (25 vol.%, 25 cm³ g⁻¹ s⁻¹) by increasing the temperature from ambient to 873, 950, or 1023 K at 0.17 K s⁻¹ and holding at each temperature for 2 h. These samples are denoted as treated catalysts, Au/Al₂O₃-X, where X represents the treatment temperature (X = 873, 950, or 1023), and the Au/Al₂O₃ solid dried at ambient temperature is named as untreated Au/Al₂O₃.

Two reference Au catalysts (1.56% wt. Au/TiO₂ and 4.44% wt. Au/Fe₂O₃, prepared by deposition–precipitation and co-precipitation, respectively) were provided by the World Gold Council (WGC). These two samples were used to examine the effects of support on CO oxidation rates and on the kinetic dependence of

measured rates on reactant pressure in the presence and in the absence of co-fed H₂O; these materials were also used to evaluate CO oxidation pathways operating with Au clusters deposited on reducible and non-reducible metal oxide supports. The mean Au cluster size (d_{Au}) derived from TEM images are 3.3 ± 0.7 and 3.6 ± 0.7 nm for Au/TiO₂ and Au/Fe₂O₃, respectively.

A Pt/Al₂O₃ catalyst (2.03% wt., Pt clusters of 1.3 nm) was also used in reactions of CO–O₂ and CO/O₂/H₂O mixtures to probe any effects of H₂O on CO oxidation rates on Pt clusters. The synthesis and characterization protocols used for this Pt catalyst have been reported elsewhere [31].

2.2. Steady-state CO oxidation rate measurements

CO oxidation rates were measured in a tubular packed-bed reactor with plug-flow hydrodynamics. Typically, catalysts (25-30 mg. 0.250–0.425 mm pellet size) were diluted with guartz granules (\sim 1 g; washed with 1 M HNO₃ at 298 K for 2 h and then treated in ambient air at 1023 K for 5 h). Samples were treated in flowing pure H₂ (28 cm³ s⁻¹ g⁻¹, 99.999%, Praxair) at 373 K (heating rate of 0.167 K s⁻¹) for 0.5 h and in H₂O/H₂ (28 cm³ s⁻¹ g⁻¹, 1 vol.% H₂O) at 373 K for 0.5 h, using a previously reported procedure that forms stable Au metal clusters [32]. The catalyst was brought to the reaction temperature (282-303 K) in flowing He (99.999%, Praxair). Gas reactants (10 vol.% CO in He, 25 vol.% O₂ in He, UHP grade, <10 ppm H₂O, Praxair) were metered by electronic controllers, and H₂O (doubly-distilled and deionized) was introduced into heated transfer lines using a syringe pump (Cole Parmer 74900 Series). Helium was used as balance. CO, O₂, and He streams were further purified with moisture traps (Matheson Tri-Gas). Reactants and products concentrations were measured by gas chromatography (Agilent 6890 GC) using a Porapak Q packed column (80–100 mesh, $1.82 \text{ m} \times 3.18 \text{ mm}$) connected to a thermal conductivity detector (TCD). All transfer lines were heated to 400–415 K to prevent H₂O condensation. No reaction products were detected in the effluent when reactors contained only guartz diluent or Al₂O₃ supports. CO conversions were kept well below 10% in most experiments (and below 15% in cases) by changing residence times while keeping CO, O₂, and H₂O concentrations at constant values. These low conversions ensure the differential nature of measured rates and avoid their rigorous but more cumbersome interpretation in terms of integral equations.

Propene epoxidation rates using O_2/H_2O mixtures were measured on Au/TiO₂, while HCOOH dehydrogenation and water–gas shift reactions were performed with all Au/Al₂O₃ samples. Gas reactants (C₃H₆, 25 vol.% O₂ in He, 10 vol.% CO in He, UHP grade, Praxair) were metered by electronic controllers, and liquids HCOOH or H₂O (doubly-distilled deionized) were introduced using a syringe pump. Reactants and products concentrations were measured with a mass spectrometer (Inficon Transpector) and a gas chromatograph (Hewlett–Packard 5890) equipped with a Porapak Q packed column (80–100 mesh, 1.82 m × 3.18 mm) connected to a thermal conductivity detector and a HP-1 capillary column (50 m × 0.32 mm × 1.05 µm) connected to a flame ionization detector (FID).

2.3. Isotopic exchange rates and kinetic isotope effects

Isotopic ${}^{16}O_2/{}^{18}O_2$ and ${}^{16}O_2/{}^{18}O$ exchange rates were measured on Au/Al₂O₃ using a glass recirculating flow reactor [33]. Samples were treated as described above, and the recirculating and reactor volumes (550 cm³ total) were evacuated with mechanical and diffusion pumps before introducing reactants as vapors (${}^{16}O_2$, 99.999%, Praxair; ${}^{18}O_2$, 99%, Isotec; H₂ ${}^{18}O$, 99 at.% ${}^{18}O$, Sigma–Aldrich). Chemical and isotopic compositions were measured by direct sampling into a gas chromatograph (Hewlett–Packard

5890) equipped with a thermal conductivity detector and an electron-impact mass selective detector (Hewlett–Packard 5972). D₂O (99.9% D, Cambridge Isotope Laboratories, Inc.) was used to measure H_2O/D_2O kinetic isotope effects (KIE) during CO oxidation using the tubular plug-flow reactor described in the previous section.

3. Results and discussion

3.1. Effects of H₂O on CO oxidation rates and catalyst stability

Fig. 1 shows CO oxidation rates at 288 K on untreated Au/Al₂O₃ with and without added H₂O. H₂O strongly influenced CO oxidation turnover rates (per surface gold atom, Aus; from mean TEM cluster sizes, 3.5 ± 1.2 nm), as also shown previously [10]. CO oxidation rates did not vary $(2.55 \pm 0.10 \text{ mol s}^{-1} \text{ g-at Au}_{s}^{-1})$ with time-on-stream for the duration of this experiment (\sim 25 ks; Fig. 1) or of similar experiments on all other catalysts reported here when H_2O (0.5 kPa) was present in CO/O_2 reactant mixtures (5 kPa CO; 2 kPa O₂). These conditions led to stable CO oxidation rates at levels that rank among the highest reported on Au-based catalysts [9]. In contrast, CO conversion rates decreased rapidly to ~ 0.08 mol s⁻¹ g-at Au_s⁻¹ (first-order deactivation rate constant, k_d , 0.76 ks⁻¹ initially and 0.21 ks⁻¹ after 3 ks on stream) when H₂O was removed from the reactant stream and the concentration of residual H₂O decreased with time. The initial CO oxidation rates were fully recovered upon reintroduction of H₂O (0.5 kPa) into the reactant mixture (Fig. 1), indicating that the effects of H_2O were reversible and that the absence of H₂O did not cause sintering or other irreversible structural changes.

The effects of H₂O concentration on steady-state CO oxidation turnover rates are shown in Fig. 2. Turnover rates initially increased with H₂O pressure at low concentrations (<0.2 kPa) and reached a maximum value at ~0.5 kPa H₂O; higher H₂O concentrations inhibited CO oxidation reactions. These positive and reversible effects of H₂O are consistent with some previous studies [16,20,34]; the inhibition observed at higher pressures may account for persistent contradictory reports about the specific effects of H₂O are not caused by parallel water–gas shift (WGS) reactions (CO + H₂O → CO₂ + H₂), because CO₂ was not formed from CO/H₂O mixtures (5 kPa CO; 2 kPa H₂O) on this Au/Al₂O₃ catalyst, even at higher temperatures (~350 K).

Positive H_2O effects have been previously attributed to the decomposition of carbonates formed on Au active sites during CO

Fig. 1. H₂O effect in CO oxidation turnover rates measured with the untreated Au/ Al₂O₃ (0.61% wt., 288 K, 5 kPa CO, 2 kPa O₂). Symbols: (\bullet) 0.5 kPa H₂O; (\blacktriangle) 0 kPa H₂O.

Fig. 2. Influence of H₂O pressure (0.03–7.15 kPa) on CO oxidation turnover rates measured with the untreated Au/Al₂O₃ (0.61% wt., 288 K, 5 kPa CO, 2 kPa O₂). Pellet size: 0.125–0.250 mm (\bullet); 0.250–0.425 mm (\blacktriangle).

oxidation in the absence of H_2O [16,34]. In contrast, other studies implicate, without specific experimental evidence, a role of H_2O in elementary steps required for O_2 activation, possibly via the formation of activated oxygen species that react rapidly with CO to form intermediates that ultimately decompose to CO_2 [14,35]. The possible involvement of H_2O in the kinetically-relevant steps in CO oxidation catalytic sequences is examined next by comparing CO oxidation turnover rates (288 K, 5 kPa CO, 2 kPa O_2) measured on Au/Al₂O₃ using H_2O or D_2O (0.5 kPa) as additives. As we show later (Section 3.4), the small measured H_2O/D_2O isotope effects indicate that O-H(D) bonds are not cleaved in kinetically-relevant steps in the CO oxidation catalytic sequence.

Previous studies have proposed that H₂O inhibition effects (>0.5 kPa) reflect competitive adsorption by H₂O-derived intermediates [10,36]. It is also possible that H₂O condensation within catalyst mesopores imposes diffusional corruptions of chemical reaction rates by decreasing intrapellet CO or O₂ concentrations and thus the kinetic driving force for CO oxidation at active sites. We find, however, that CO oxidation turnover rates did not depend on pellet size (0.125–0.250 and 0.250–0.425 mm diameter; Fig. 2); thus, even if condensation occurred, the presence of H₂O within alumina pores did not impose transport barriers, which would have caused smaller rates on the larger pellets. Moreover, the pore size distribution of the Al₂O₃ used in this study did not lead to detectable pore filling below ~ 1.5 kPa H₂O at reaction temperatures (Supplementary Content). We conclude that the H₂O inhibition observed above \sim 0.5 kPa (Fig. 2) reflects competitive adsorption of H₂O-derived adsorbed species with reactive intermediates derived from CO or O2 on Au clusters and arise from chemical origins instead of any transport corruptions.

Thermal treatments of Au/Al₂O₃ in 25 vol.% O₂/He at temperatures up to 1023 K did not lead to detectable changes in Au cluster size (transmission electron microscopy, TEM; Supplementary Content) or in CO oxidation rates in the presence of H₂O (288 K, 5 kPa -CO, 2 kPa O₂, 0.5 kPa H₂O; Table 1), indicating that Au clusters on Al₂O₃ resist sintering even at these high temperatures and that the deactivation of Au-based catalysts reported during CO oxidation in the absence of H₂O at near-ambient temperatures cannot reflect cluster growth. These data also show that CO oxidation occurs on the Au clusters visible in transmission electron micrographs. In contrast, the rates of HCOOH dehydrogenation (353 K, 2 kPa HCOOH) and water–gas shift (523 K, 5 kPa CO, 2 kPa H₂O) decreased markedly with increasing treatment temperature, apparently as a result of the disappearance of smaller Au structures

Table 1

Influence of Au/Al₂O₃ treatment temperature (O₂/He, 2 h) on Au clusters size obtained by TEM and on rates for CO oxidation, HCOOH dehydrogenation, and water–gas shift reactions.

 Catalyst
 Treatment temp. (K)
 Mean Au size (nm)
 Rate (mol h⁻¹ g-at Au⁻¹)

Catalyst	Treatment temp. (K)	Mean Au size (nm)	Rate (mol h^{-1} g-at Au^{-1})		
			CO-02-H20a	HCOOH ^b	CO-H ₂ O ^c
Au/Al ₂ O ₃	-	3.5 ± 1.2	2589	477	110
Au/Al ₂ O ₃ -873	873	4.0 ± 1.0	2827	201	74
Au/Al ₂ O ₃ -950	950	4.0 ± 1.1	2535	85	57
Au/Al_2O_3 -1023	1023	4.3 ± 1.2	2610	40	30

^a 288 K, 5 kPa CO, 2 kPa O₂, 0.5 kPa H₂O.

^b 353 K, 2 kPa HCOOH.

^c 523 K, 5 kPa CO, 2 kPa O₂.

undetectable at the resolution of these transmission electron micrographs (Table 1) [29].

3.2. Kinetic dependence of CO oxidation rates on reactants pressure and temperature

The stable CO oxidation turnover rates observed in the presence of H₂O allowed accurate and reproducible kinetic measurements over a wide range of CO, O₂, and H₂O pressures. Next, we report the kinetic effects of CO and O₂ pressures on CO oxidation turnover rates on Au/Al₂O₃ (0.5 kPa H₂O; Fig. 3). CO oxidation turnover rates increased with increasing CO (0.80-8.25 kPa) and O₂ (0.25-7.15 kPa) pressures, with empirical fractional orders of 0.24 ± 0.02 and 0.60 \pm 0.02, respectively. Au/Al₂O₃ treated in O₂/He at various higher temperatures (873-1023 K) gave similar kinetic effects of CO (0.15-0.25 order) and O₂ (0.55-0.60 order) (288 K, 1-6 kPa CO, 0.5-6 kPa O₂, 0.5 kPa H₂O) and they also requires co-fed H₂O for high and stable CO oxidation turnover rates (Supplementary Content). These fractional reaction orders, taken at face value, cannot be reconciled with any sequence of elementary steps. Yet, it is in such a manner that kinetic data on Au catalysts have been invariably reported; we do so here, only momentarily, to show that these fractional orders lie within the broad range reported in previous studies using nominally anhydrous CO/O2 mixtures (0.1-0.5 and 0.3-0.6 for CO and O₂, respectively [1,7,9,24,37,38]). The positive orders in both CO and O₂ indicate that either both CO and O₂ are present below saturation coverages on Au surfaces during CO oxidation or that they adsorb non-competitively on distinct active sites.

CO oxidation turnover rates (5 kPa CO, 2 kPa O₂, 0.5 kPa H₂O) on Au/Al₂O₃ catalysts increased with temperature (282–303 K) in a manner consistent with an apparent activation energy of $36 \pm$ 3 kJ mol⁻¹ (Fig. 4); these values lie within the range reported by other authors (22–40 kJ mol⁻¹) on Au/Al₂O₃ (1.2–5.6 nm Au clusters) in the presence of H₂O (40 ppm) or H₂ (0.25–75 kPa) at 303–453 K [14,34,39]. However, in the absence of H₂O, other authors found lower CO oxidation activation energies (12 ± 1 kJ mol⁻¹, 295–373 K) with Au/Al₂O₃ (1.2 nm Au) [34]. Moreover, erratic and large differences in activation energies, ranging from 8 to 75 kJ mol⁻¹, have been reported in the literature for nominally anhydrous CO/O₂ reactions on Au clusters deposited on reducible and non-reducible supports (TiO₂, Fe₂O₃, CeO₂, SiO₂, etc.).

3.3. CO-O₂ reaction pathways on Au/Al_2O_3 in the presence of H_2O

Scheme 1 depicts a sequence of elementary steps for low-temperature CO oxidation reaction consistent with the kinetic data discussed in Section 3.2. Steps 1, 2, and 3 represent quasi-equilibrated non-dissociative adsorption steps for all species in the reactant stream (CO, O_2 , and H_2O). O_2 adsorption is assumed to be molecular and reversible. Irreversible O_2 adsorption (whether molecular or dissociative) would lead to CO oxidation rates proportional to O_2 pressures, in contradiction with our kinetic data and with most previous reports [1]. Reversible O_2 adsorption and subsequent reactions with the CO* species present as most abundant reaction intermediates (MARI) would also lead to first-order O_2 kinetics,

Fig. 3. Kinetic dependence of CO oxidation turnover rates on CO pressure (0.80–8.25 kPa CO, 2 kPa O_2 , 0.5 kPa H_2O) and O_2 pressure (0.25–7.15 kPa O_2 , 5 kPa CO, 0.5 kPa H_2O) measured with the untreated Au/Al₂O₃ (0.61% wt., 288 K).

Fig. 4. Arrhenius plots for the CO oxidation (5 kPa CO; 2 kPa O₂; 0.5 kPa H₂O) measured with the untreated Au/Al₂O₃ (\bullet , 0.61% wt., 3.5 nm Au, 282–303 K) and Pt/Al₂O₃ (Δ , 2.03% wt., 1.3 nm Pt, 373–423 K). Rates with Pt/Al₂O₃ were determined at 1 kPa CO and 10 kPa O₂ and recalculated according to previously reported and well-established CO and O₂ pressures effects on measured kinetics (+1 and –1 reaction orders for O₂ and CO pressure, respectively) [31].

1.
$$CO + *$$
 \longleftrightarrow CO^* K_1
2. $O_2 + *$ \longleftrightarrow O_2^* K_2
3. $H_2O + *$ \longleftrightarrow H_2O^* K_3
4. $O_2^* + H_2O^*$ \longleftrightarrow $*OOH + *OH$ K_4
5. $*OOH + CO^*$ \longrightarrow $*OH + CO_2 + *$ k_5
6. $*OH + *OH$ \longrightarrow $H_2O^* + O^*$ k_6
7. $CO^* + O^*$ \longleftrightarrow $CO_2 + 2^*$ k_7

Scheme 1. CO oxidation pathways on Au/Al_2O_3 at low temperatures in the presence of co-fed H_2O (* denotes a vacant active site and X* the various adsorbed species).

suggesting that alternate steps must be involved in the activation of O₂^{*} species. Step 4 represents the formation of hydroperoxy species (*OOH) via proton transfer from water to O_2^* , in a step assumed to be fast and quasi-equilibrated based on the small measured H_2O/D_2O kinetic isotope effects (Section 3.4). In this sequence, O-O bond activation is assisted by H_2O , in a step that avoids the difficult dissociation of O2 on Au surfaces; this step forms *OOH species that then react with CO^{*} to form CO₂ (step 5). Catalytic turnovers are completed via the recombination of *OH species (step 6) to re-form the H₂O molecule used to activate O_2^* (which therefore acts as a co-catalyst instead of a stoichiometric reactant) and an O^{*} atom; the latter is ultimately removed via the reaction with CO^* to form another CO_2 molecule (step 7), a step that exhibits a low activation barrier (~24 kJ mol⁻¹) according to previous theoretical estimates on Au(211) and Au(221) model surfaces [40]. *OH recombination to HOOH* (*OH + *OH \rightarrow HOOH* + *) is not considered as a plausible alternate path to the proposed $H_2O^* + O^*$ reaction ($E_a = 17-25$ kJ mol⁻¹ [41,42]) based on DFT estimates on Au(111) showing a much higher activation energy barrier (157 kJ mol⁻¹) [43]).

The assumption of pseudo-steady-state [44] for all adsorbed species and of quasi-equilibrium for steps 1–4 in Scheme 1 leads to the following CO oxidation rate equation, the full algebraic derivation of which is included in Appendix A:

Each term in the denominator of this equation represents the concentration of the indicated adsorbed intermediate relative to the concentration of vacant sites on Au cluster surfaces. In Eq. (1), K_1 , K_2 , and K_3 are the equilibrium constants for molecular CO, O₂, and H₂O adsorption, respectively, and α , β , γ , and δ are given by the combinations of rate and equilibrium constants for elementary steps

$$\alpha = 3/2(K_1K_2K_3K_4K_5)^{2/3}(2K_6)^{1/3}$$
⁽²⁾

$$\beta = (K_2 K_3 K_4)^{2/3} (2K_6)^{1/3} (K_1 K_5)^{-1/3}$$
(3)

$$\gamma = K_1^{-1/3} (K_2 K_3 K_4 K_5)^{2/3} (K_6)^{1/3} (2)^{-2/3} (K_7^{-1})$$
(4)

$$\delta = (K_2 K_3 K_4 K_5)^{1/3} (2K_6)^{1/3}$$
(5)

The values of the kinetic parameters β , γ , and δ derived from the nonlinear regression analysis of measured CO oxidation rates make

the terms in the denominator of Eq. (1) containing these constants (relative surface coverage of O^* , *OH, and *OOH) to be much smaller than the others (vacant sites, CO^* , O^*_2 , and H_2O^* ; Supplementary Content) at the conditions of our experiments. Therefore, Eq. (1) becomes

$$r = \frac{\alpha (P_{\rm C0} P_{\rm O_2} P_{\rm H_20})^{2/3}}{\left[1 + K_1 P_{\rm C0} + K_2 P_{\rm O_2} + K_3 P_{\rm H_20}\right]^2} \tag{6}$$

when assuming that *OOH, *OH, and O* are minority surface species present in much lower concentrations than vacant sites (*), CO*, O_2^* , and H_2O^* .

The parity plot in Fig. 5 shows that Eq. (6) accurately describes the measured effects of reactants pressures (0.80-8.25 kPa CO; 0.25-7.15 kPa O₂; 0.03-1.15 kPa H₂O) on CO oxidation turnover rates on Au/Al₂O₃. We did not find other assumptions about most abundant surface species or about quasi-equilibrated steps consistent with these measured rates. Alternate CO/O₂/H₂O reaction pathways were also considered (Supplementary Content), but rigorous kinetic and isotopic (shown later) analyses demonstrated that none of them was able to successfully predict measured rate data. The kinetic parameters derived from the nonlinear regression analysis of measured CO oxidation rates with Au/Al₂O₃ are shown in Table 2. The H_2O adsorption equilibrium constant (3.1 ± 0.6 kPa⁻¹) is larger than for CO and O₂ (0.18 \pm 0.05 and 0.06 \pm 0.02 kPa⁻¹, respectively); CO is indeed expected to bind more strongly than O₂, based on first-principle density functional theory (DFT) with generalized gradient approximation (GGA) calculations on Au/Al₂O₃(100) and Au₈-Au₃₀ model systems, which gave CO adsorption energies (90-100 kJ mol⁻¹) much greater than for O₂ $(5-70 \text{ kJ mol}^{-1})$ [41,45–47]. The measured H₂O adsorption constant (K_3) is, however, somewhat larger than the expected from

Fig. 5. Parity plot for measured (0.61% wt. Au/Al_2O_3 ; 288 K; 0.80–8.25 kPa CO; 0.25–7.15 kPa O₂; 0.03–1.15 kPa H₂O) and calculated (from Eq. (6)) CO oxidation turnover rates.

Table 2

Kinetic parameters for the CO oxidation model in the presence of H_2O (Scheme 1) obtained from nonlinear fitting to Eq. (6) of kinetic data measured with Au/Al_2O_3 , Au/TiO_2 , and Au/Fe_2O_3 catalysts.

Kinetic parameter	Au/Al_2O_3	Au/TiO ₂	Au/Fe ₂ O ₃
$\alpha (s^{-1} kPa^{-2})$ $K_1 (kPa^{-1})$ $K_2 (kPa^{-1})$ $K_3 (kPa^{-1})$	$11.0 \pm 3.4 \\ 0.18 \pm 0.05 \\ 0.06 \pm 0.02 \\ 3.1 \pm 0.6$	$12.3 \pm 3.4 \\ 0.24 \pm 0.09 \\ 0.05 \pm 0.02 \\ 3.4 \pm 0.9$	1.3 ± 0.4 0.18 ± 0.07 0.16 ± 0.06 1.1 ± 0.5

 $\alpha = 3/2(K_1K_2K_3K_4K_5)^{2/3}(2K_6)^{1/3}.$

Fig. 6. H_2O/D_2O isotope effects on CO oxidation turnover rates measured with Au/ Al_2O_3 (0.61% wt., 288 K; 5 kPa CO; 2 kPa O_2 ; 0.5 kPa H_2O (\blacksquare) or D_2O (\bigcirc)).

the Au–H₂O interaction energies reported from previous theoretical treatments on model Au₈–Au₃₀, Au/Al₂O₃(100), and Au/TiO₂(110) surfaces (30–100 kJ mol⁻¹) [42,48].

3.4. H₂O/D₂O isotope effects and isotopic exchange measurements

H₂O/D₂O isotope effects were used to probe the potential involvement of H₂O and of O-H bond activation in kinetically-relevant steps in the context of the CO oxidation catalytic sequence depicted in Scheme 1. CO oxidation turnover rates (288 K, 5 kPa -CO, 2 kPa O_2) were measured on untreated Au/Al₂ O_3 by adding H₂O or D₂O (0.5 kPa) to CO/O₂ reactant streams (Fig. 6). The small measured H_2O/D_2O isotope effects ($rH_2O/rD_2O = 1.21$; Fig. 6) are consistent with previous studies that report H₂O/D₂O isotope effects near unity on Au/Al₂O₃ (295 K, 1 kPa CO, 0.5 kPa O₂, 1.5 kPa $H_2O(D_2O))$ [16]. These data lead us to conclude that O-H (or O-D) bonds are not cleaved in kinetically-relevant steps, which would have shown large normal isotope effects at these low temperatures (288 K). These small normal H₂O/D₂O isotope effects reflect their probable thermodynamic origins stemming from quasi-equilibrated H₂O dissociation steps that occur before kinetically-relevant steps in CO oxidation catalytic sequences.

Next, we probe O_2 chemisorption steps on Au/Al₂O₃ by measuring the rate of formation of ${}^{16}O^{18}O$ isotopologues from

equimolecular $^{16}\text{O}_2/^{18}\text{O}_2$ mixtures (5 kPa) at 300 K in the absence of CO and H₂O. Quasi-equilibrated dissociation would form binomial isotopologue distributions (50% $^{16}\text{O}^{18}\text{O}$), while molecular adsorption steps would not form mixed $^{16}\text{O}^{18}\text{O}$ isotopes. The rate of $^{16}\text{O}^{18}\text{O}$ formation (300 K, 5 kPa $^{16}\text{O}_2$, 5 kPa $^{18}\text{O}_2$) was ~50 times smaller than CO oxidation rates (288 K, 5 kPa CO, 2 kPa O₂, 0.5 kPa H₂O) even at higher temperatures and O₂ pressures than those used in CO oxidation catalysis (Fig. 7a); these findings are consistent with previous studies that reported no detectable $^{16}\text{O}^{18}\text{O}$ formation during $^{16}\text{O}_2/^{18}\text{O}_2$ isotopic exchange at similar pressures on Au/TiO₂ (353 K) and Au/Fe₂O₃ (298 K) [13,49] and show that O₂ adsorbs molecularly (O₂ + * \leftrightarrow O₂^{*}) on Au clusters.

The rate of isotopic exchange between ${}^{16}O_2$ (5 kPa) and $H_2{}^{18}O$ (0.5 kPa) was also measured on Au/Al₂O₃ at 300 K in the absence of CO. The formation of ${}^{16}O{}^{18}O_2$, or $H_2{}^{16}O$ molecules was not detected (Fig. 7b). The absence of isotopic exchange between O₂ and H₂O reflects the non-dissociative nature of O₂ adsorption on Au, as also inferred from the absence of ${}^{16}O_2/{}^{18}O_2$ exchange. We note that steps 2–4 in the catalytic sequence do not lead to the cleavage of O–O bonds, which instead occurs in latter steps via reactions with CO* in CO oxidation and with propene in propene epoxidation on Au catalysts [28]; as a result, the equilibrated nature of these O₂ adsorption and reaction steps cannot cause isotopic oxygen exchange.

3.5. Support effects on CO oxidation rates with Au-based catalysts

The identity of the support has been often implicated as an essential second function in the reactivity of Au clusters in CO oxidation [1,5,6,24,50], either via its participation in O₂ activation or because of its ability to stabilize small Au clusters. Reducible oxides (e.g., TiO₂, Fe₂O₃) have been reported to catalyze CO oxidation at higher rates than refractory oxides (e.g., Al₂O₃, SiO₂), a finding attributed to the requirement for O₂ activation on periphery sites located at Au-support interfaces [6,51]. The data used to reach these conclusions were obtained under nominally anhydrous conditions, but possibly in the presence of catalytically-consequential levels of H₂O, derived, at least in part, from H₂O adsorbed on supports and at concentrations that decrease with time as H₂O is depleted by desorption from these supports. These processes may have led, in turn, to the decrease in rates with time often interpreted as catalyst deactivation during CO oxidation on Au-based catalysts.

Fig. 8 and Table 3 compare turnover rates on Au clusters of similar size dispersed on reducible (TiO_2 and Fe_2O_3 , 3.3 ± 0.7 and 3.6 ± 0.7 nm Au clusters, respectively) and non-reducible (Al_2O_3 ,

Fig. 7. Molar fraction of ${}^{16}O_2$ (\blacksquare), ${}^{16}O^{18}O$ (\blacklozenge), and ${}^{18}O_2$ (\blacktriangle) during contact at 300 K of equimolar ${}^{16}O_2/{}^{18}O_2$ (a, 5 kPa) or ${}^{16}O_2/{}^{18}O$ (b, 5 kPa O_2 , 0.5 kPa H_2O) on Au/Al₂O₃ (0.61% wt.; untreated).

Fig. 8. H₂O effect on CO oxidation turnover rates (288 K, 5 kPa CO, 2 kPa O₂) measured with Au/TiO₂ (a) and Au/Fe₂O₃ (b). Symbols: (•) 0.5 kPa H₂O; (•) 0 kPa H₂O;

Table 3
Effect of H ₂ O addition (0.5 kPa) on CO oxidation turnover rates
(288 K, 5 kPa CO, 2 kPa O ₂) for Au clusters deposited onto Al ₂ O ₃
(0.61% wt. Au), TiO ₂ (1.56% wt. Au), and Fe ₂ O ₃ (4.44% wt. Au).

	CO oxidation turnover rate $(mol \ s^{-1} \ g\text{-at} \ Au_s^{-1})$		
Added H ₂ O (kPa)	0	0.5	
Au/Al_2O_3 Au/TiO_2	0.08 0.54	2.55	
Au/Fe_2O_3	0.07	0.59	

3.5 ± 1.2 nm Au clusters) oxides for CO/O₂ and CO/O₂/H₂O reactants. As in the case of Au/Al₂O₃ catalysts, the addition of H₂O as a co-catalyst was essential for stable turnover rates on Au/TiO₂ and Au/Fe₂O₃. H₂O (0.5 kPa) increased CO oxidation rates on all catalysts, but to different extents, possibly because of the presence of support-dependent H₂O concentrations even for nominally anhydrous CO-O₂ reactants. Turnover rates with anhydrous CO-O₂ reactants (based on TEM mean cluster sizes) on Au/TiO₂ were significantly higher than on Au/Al₂O₃ (~7 times), in agreement with literature claims for the benefits of reducible oxide supports. CO/O₂/H₂O mixtures, however, gave similar rates on Au/TiO₂ and Au/Al₂O₃ (2.70 and 2.55 mol s⁻¹ g-at Au_s⁻¹, respectively) and somewhat smaller rates on Au/Fe₂O₃ (0.59 mol s⁻¹ g-at Au_s⁻¹). The latter

values appear to reflect the encapsulation of some TEM-visible Au clusters within Fe_2O_3 as a consequence of the co-precipitation methods used, which in contrast with the deposition–precipitation method used for TiO_2 and Al_2O_3 supports do not ensure the presence of Au clusters at accessible support surfaces.

We conclude from these data that supports influence CO oxidation turnover rates with anhydrous reactants, perhaps because they can contribute adsorbed H₂O as co-catalyst or as periphery sites that become essential for O₂ activation only under anhydrous conditions. These support effects and specifically the reducible nature of the support become much less consequential when H₂O mediates the required O₂ activation steps. The observed H₂O effects on CO oxidation rates with Au/TiO₂ and Au/Fe₂O₃ also suggest that the mechanistic pathways in Scheme 1 are also involved in CO oxidation reactions on reducible supports, as long as H₂O is present as a co-catalyst. These elementary steps occur on Au cluster surfaces without any significant requirement for a second function provided by either interfacial or support sites. This is also consistent with previous reports [14] showing similar CO oxidation activation energies on Au/TiO₂ and Au/Al₂O₃ (22 and 25 kJ mol⁻¹, respectively), which suggests a common reaction mechanism over these two catalysts.

The effects of CO and O_2 pressure on CO oxidation turnover rates on Au/TiO₂ and Au/Fe₂O₃ (Fig. 9; 288 K, 0.5 kPa H₂O) were

Fig. 9. Kinetic dependence of CO oxidation turnover rates on CO (•, 1–5 kPa CO, 2 kPa O₂, 0.5 kPa H₂O) and O₂ (•, 0.5–6 kPa O₂, 5 kPa CO, 0.5 kPa H₂O) pressures measured at 288 K with Au/TiO₂ (a) and Au/Fe₂O₃ (b).

Fig. 10. Parity plot for measured (288 K; 1-6 kPa CO; 0.5-6 kPa O_2 ; 0.12-0.53 kPa H_2O) and calculated (from Eq. (6)) CO oxidation turnover rates with Au/TiO₂ (\bullet) and Au/Fe₂O₃ (\blacktriangle).

similar to those measured on Au/Al₂O₃ (Fig. 3). Turnover rates increased with CO pressure $(1-6 \text{ kPa}, 0.29 \pm 0.04, \text{ and } 0.19 \pm 0.02)$ orders on Au/TiO₂ and Au/Fe₂O₃, respectively) and O₂ pressure $(0.5-6 \text{ kPa}, 0.68 \pm 0.01, \text{ and } 0.49 \pm 0.02 \text{ orders on Au/TiO}_2 \text{ and Au/}$ Fe₂O₃, respectively). The sequence of elementary steps in Scheme 1 therefore appears to be generally applicable to CO oxidation reactions with CO-O₂-H₂O reactants on Au clusters dispersed on all three supports. The rate equation derived from the steps in Scheme 1 (Eq. (6)) accurately described all rate data as a function of CO, O_2 , and H₂O pressures on Au/TiO₂ and Au/Fe₂O₃. Fig. 10 shows the respective parity plots of measured and predicted turnover rates, and Table 1 lists the regressed kinetic parameters. As found on Au/Al₂O₃, H₂O adsorption equilibrium constants are larger than for CO and O₂ on Au/TiO₂ and Au/Fe₂O₃ (Table 2). The values of K_1, K_2 , and K_3 are similar on all supports, consistent with the similar size of Au clusters and their exclusive involvement in mediating the elementary steps in Scheme 1.

3.6. Evidence for the presence and reactivity of hydroperoxy (*00H) species on Au

The elementary steps for CO-O₂ reactions in the presence of H₂O (Scheme 1) and the assumptions made about their reversibility lead to a rate equation (Eq. (6)) consistent with measured rates on Au clusters dispersed on both reducible (TiO₂, Fe₂O₃) and nonreducible (Al₂O₃) supports. These steps and assumptions are also consistent with H₂O/D₂O isotope effects on CO oxidation rates and with the absence of isotopic exchange in $^{16}\text{O}_2/^{18}\text{O}_2$ and $^{18}\text{O}_2/$ $H_2^{16}O_2$ mixtures. O_2 activation involves reactions of O_2^* and H_2O^* to form hydroperoxy species (*OOH) with intact O-O bonds, but weaker relative to those in O2 molecules. These *OOH intermediates also account for the reactivity of small Au clusters in the formation of H₂O₂ from H₂-O₂ mixtures [52,53], which proceeds via *OOH intermediates, as shown from theoretical estimates [27], electronic and spin resonance spectra [54], and inelastic neutron scattering [55]. *OOH species also account for propylene epoxidation with H_2/O_2 mixtures on Au-based catalysts [56,57]. These *OOH species have been also proposed to account for the promotion of CO oxidation by H₂, without specific direct evidence [35,39,58]. The formation of H₂O₂ has been detected by UV-visible spectroscopy during CO oxidation on Au/TiO₂ and Au/C in aqueous alkaline media [18].

The formation of *OOH species from O_2/H_2O mixtures is also evident from the formation of propylene oxide from propene at

Table 4

Effect of H_2O addition on initial (extrapolated to zero time-on-stream) propene epoxidation rates and selectivity (350 K, 4 kPa C_3H_6 , 4 kPa O_2) with Au/TiO₂ (1.56% wt. Au, WGC). Table adapted from reference [28].

H ₂ O pressure (kPa)	Metal-time yield (mol h^{-1} g-at Au $^{-1}$)	Selectivity (%, carbon based)	
		Propene oxide	Acetone
1	0.35	85.2	14.8
2	0.51	75.0	25.0
6	0.52	39.7	60.3
12	0.57	24.1	75.9

near-ambient temperatures on Au/TiO₂ (Table 4, 350 K) [28], a finding later confirmed by propylene oxide synthesis from CO/ O₂/propene mixtures in aqueous Au/TiO₂ and TS-1 suspensions [59]. These epoxidation reactions provide independent evidence for the formation of *OOH species from O₂-H₂O reactants and for their involvement in O₂ activation during CO oxidation reactions. These O₂ activation pathways occur on Au clusters surfaces without detectable involvement of the support and remove the need for support-mediated O₂ activation at the periphery of Au clusters as a requirement for CO oxidation catalysis. Theoretical calculations on Au₈ and Au₃₀ clusters indicate that coadsorbed H₂O and O₂ form O₂·H₂O complexes via partial proton sharing or transfer with low activation barriers (17–25 kJ mol⁻¹) to form *OOH species [41,42]. *OOH species may be responsible for the well-established promotional effect of H₂ in CO/O₂ reaction on Au catalysts [1,34,39,60,61], as proposed previously for model Ru–Pt core shell nanoparticles from first-principles calculations consistent with atomic H^{*} addition to O₂^{*} to form *OOH as the relevant pathway in the preferential oxidation of CO in H₂-rich streams [62].

3.7. H₂O effects on CO oxidation turnovers catalyzed by supported Pt clusters

A catalytic effect of H₂O was also observed during CO oxidation on Pt clusters, the origins of which have not, to our knowledge, been examined in the extensive previous literature dealing with Pt-catalyzed CO oxidation catalysis [63,64]. Fig. 11a shows CO oxidation turnover rates on Pt/Al₂O₃ at 423 K (2.03% wt., 1.3 nm Pt clusters) with and without added H₂O. CO oxidation rates decreased from 0.28 to 0.08 mol s⁻¹ g-at Pt_s⁻¹ in \sim 1 ks when H₂O (0.5 kPa) was removed from the reactant mixture (1 kPa CO, 10 kPa O₂). Initial CO oxidation rates were fully recovered upon reintroduction of H₂O (0.5 kPa, Fig. 11a). The parallel formation of CO2 via water-gas shift occurs at negligible rates $(< 10^{-3} \text{ mol s}^{-1} \text{ g-at Pt}_{s}^{-1}$, Pt clusters of 0.9–1.7 nm) at these temperatures (423 K, 3 kPa CO, 10 kPa H_2O) [63,65]. The data in Fig. 11a suggest that H₂O also provides a more facile route for O₂ activation during CO oxidation on CO-covered Pt clusters. A recent study combining theory and experiment [31] showed that anhydrous CO oxidation on Pt occurs via CO*-assisted O₂ dissociation steps on surfaces nearly saturated by chemisorbed CO* intermediates, which hinder O₂ adsorption and subsequent activation. The presence of H₂O may act to decrease local CO* coverages and weaken inhibition effects by CO [64], but may also provide *OOH species as alternate O₂ activation routes with lower activation barriers and concomitantly higher CO oxidation turnover rates than the CO-assisted O₂ activation steps that limit CO oxidation with anhydrous CO/O₂ mixtures. Indeed, apparent activation energies decrease from $84 \pm 6 \text{ kJ mol}^{-1}$ (403–473 K, 1 kPa CO, 10 kPa O₂) [31] to 66 ± 8 kJ mol⁻¹ (373-423 K, 1 kPa CO, 10 kPa O₂, 0.5 kPa H₂O, Fig. 11b) when H_2O was present in CO/O_2 reactants.

Fig. 11. H₂O effect on CO oxidation turnover rates (a, 423 K) and Arrhenius plot (b, 373–423 K) measured with Pt/Al₂O₃ (2.03% wt., 1.3 nm Pt clusters, 1 kPa CO, 10 kPa O₂). Symbols: (•) 0.5 kPa H₂O; (▲) 0 kPa H₂O.

Fig. 4 shows CO oxidation turnover rates (5 kPa CO, 2 kPa O₂, and 0.5 kPa H₂O) on Au/Al₂O₃ (3.5 nm Au) and Pt/Al₂O₃ (1.2 nm Pt) as a function of temperature. CO oxidation turnover rates were much higher on Au clusters than on Pt clusters. CO oxidation activation energies were also much smaller on Au/Al₂O₃ than Pt/Al₂O₃ (36 ± 3 versus 66 ± 8 kJ mol⁻¹). The lower CO oxidation rates on Pt clusters reflect CO*-saturated surfaces, a phenomenon that decreases O₂ adsorption rates on Pt [31]. In contrast, Au surfaces are not saturated with CO* intermediates during CO oxidation catalysis (as suggested by the small CO adsorption equilibrium, K_1). Consequently, the adsorption of O₂ and H₂O and the subsequent formation of the oxidant species (hydroperoxy intermediates) is more facile on Au-based catalysts.

3.8. Role of H₂O in CO oxidation pathways catalyzed by supported noble metal (Au, Pt) clusters

The experimental evidence reported here for H₂O effects on CO oxidation turnover rates resolves long-standing conflicts among measured rates on Au catalysts with similar cluster size, Au contents, supports, and synthetic provenance. The presence of H₂O as a co-catalyst in CO/O2 reactants, even at trace concentrations, affects significantly catalyst stability and measured CO oxidation rates. H₂O addition is essential for stable turnover rates, and its presence leads to a sequence of elementary steps that are mediated by hydroperoxy species (*OOH), which account for the co-catalytic effect of H₂O on CO oxidation rates and on catalyst stability, as well as for the ability of Au clusters to catalyze propene epoxidation reactions with O₂/H₂O mixtures [28,59]. The elementary steps that form the hydroperoxy species from O₂ and H₂O occur exclusively on Au cluster surfaces without any significant involvement of support sites; hence, the reducible nature of the support become much less consequential for CO oxidation catalysis in the presence of the H₂O molecules that mediate required O₂ activation steps. In contrast, supports influence CO oxidation turnover rates with nominally anhydrous reactants, perhaps because they contribute either adsorbed H₂O that acts as co-catalyst in CO oxidation or periphery sites that become essential for O₂ activation, but which are required only in the absence of H₂O.

The observed H_2O effects in CO oxidation are not exclusive of reactions catalyzed by Au clusters. We find that H_2O also influences significantly measured CO oxidation rates with Pt clusters. This strongly suggests that CO oxidation with H_2O as a co-catalyst occurs on supported noble metal clusters via common elementary steps involving the formation of hydroperoxy species that are

responsible for the higher measured CO oxidation rates compared to those with anhydrous CO/O_2 mixtures.

4. Conclusions

Moisture levels in "anhydrous" CO/O₂ streams well below the detection limits of typical speciation techniques are consequential for CO oxidation catalysis; this has led to our suggestion that the presence of H₂O is essential both for practical CO oxidation rates, for their reproducible measurements, and for fundamental studies of the mechanism and site requirements of these reactions. H₂O is an efficient co-catalyst necessary for O₂ activation steps and for catalyst stability in CO/O₂ reactions at near-ambient temperatures with Au clusters (<5 nm) deposited on reducible (TiO₂, Fe₂O₃) and non-reducible (Al₂O₃) supports. Rigorous kinetic and isotopic data measured on stable Au catalysts have led us to propose a mechanistic picture of CO oxidation in the presence of H₂O that involves H₂O-mediated O₂ activation steps that form hydroperoxy species (*OOH), which precisely account for the remarkable co-catalytic effect of H₂O on measured CO oxidation rates. These steps occur exclusively on the Au clusters; hence, the influence of support identity on CO oxidation catalysis, and specifically its reducible nature, becomes much less important in the presence of H₂O. These H₂O effects in CO/O₂ reactions are also found with Pt catalysts, which suggest that common elementary steps during CO/ O₂/H₂O reaction occurs on supported noble metal clusters (Au,Pt). The formation of hydroperoxy species explains the significantly higher CO oxidation rates compared to those measured with anhydrous CO/O2 mixtures.

Acknowledgments

This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract DE-AC02-05CH11231. M. Ojeda acknowledges the financial support from the European Union (Marie Curie Actions, MOIF-CT2005-007651) and Spanish Ministry of Science and Innovation (RYC-2010-06067). H. Kung and M. Kung (Northwestern University) kindly provided the initial Au/Al₂O₃ catalysts and synthetic protocols. We thank Dr. David Flaherty for proofreading and helpful discussions. We are also grateful for the electron microscopy data provided by Dr. M. Avalos, L. Rendon and F. Ruiz from the *Centro de Ciencias de la Materia Condensada*, UNAM, Mexico. The World Gold Council (WGC) is also acknowledged for supplying the reference Au samples.

Appendix A

The rate of CO oxidation via the sequence of elementary steps shown in Scheme 1 is given by

$$r_{CO_2} = r_5 + r_7$$
 (A1)

By applying the pseudo-steady-state approximation (PSSA) to O^{*} and ^{*}OH species, we find that $r_6 = r_7$ and $r_5/2 = r_6$, respectively. Consequently, Eq. (A1) becomes

$$r_{\rm CO_2} = \frac{3}{2}r_5 = \frac{3}{2}k_5[\rm CO^*][*\rm OOH]/[L]$$
 (A2)

where [L] is the number of active sites.

The quasi-equilibrium assumption for steps 1–4 gives

$$[CO^*] = K_1 P_{CO}[*]$$
(A3)
$$[O_2^*] = K_2 P_{O_2}[*]$$
(A4)

$$[H_2O^*] = K_3 P_{H_2O}[*]$$
(A5)

$$[^{*}OOH = \frac{K_{4}[O_{2}^{*}][H_{2}O^{*}]}{[^{*}OH]}$$
(A6)

The PSSA to *OH gives

$$[^*OOH = \frac{2k_6[OH]^2}{k_5[CO^*]}$$
(A7)

Combining Eqs. (A3)–(A7)

$$[^{*}OH] = \left(\frac{K_{1}K_{2}K_{3}K_{4}K_{5}}{2k_{6}}\right)^{1/3} (P_{CO}P_{O_{2}}P_{H_{2}O})^{1/3}[*]$$
(A8)

Substituting Eq. (A8) in Eq. (A6)

$$[*OOH] = \frac{(K_2 K_3 K_4)^{2/3} (2k_6)^{1/3}}{(K_3 K_5)^{1/3}} \frac{(P_{0_2} P_{H_2 0})^{2/3}}{P_{C0}^{1/3}} [*]$$
(A9)

Hence, the rate of CO oxidation (Eq. (A2)) becomes

$$\begin{split} r_{\text{CO}_2} &= \frac{3}{2} (K_1 K_2 K_3 K_4 k_5)^{2/3} (2k_6)^{1/3} (P_{\text{CO}} P_{\text{O}_2} P_{\text{H}_2 \text{O}})^{2/3} [*]^2 / [L] \\ &= \alpha (P_{\text{CO}} P_{\text{O}_2} P_{\text{H}_2 \text{O}})^{2/3} [*]^2 / [L] \end{split} \tag{A10}$$

where

$$\alpha = \frac{3}{2} (K_1 K_2 K_3 K_4 K_5)^{2/3} (2k_6)^{1/3}$$
(A11)

[*OOH] and [*OH] can be written as follows:

$$[*OOH] = \beta \frac{(P_{O_2} P_{H_2O})^{2/3}}{P_{CO}^{1/3}} [*]$$
(A12)

and

$$[^{*}OH] = \delta(P_{CO}P_{O_{2}}P_{H_{2}O})^{1/3}[*]$$
(A13)

where

$$\beta = \frac{(K_2 K_3 K_4)^{2/3} (2k_6)^{2/3}}{(K_1 k_5)^{1/3}}$$
(A14)

and

$$\delta = \left(\frac{K_1 K_2 K_3 K_4 K_5}{2k_6}\right)^{1/3} \tag{A15}$$

A site balance gives

$$[L] = [*] + [CO^*] + [O_2^*] + [H_2O^*] + [*OOH] + [*OH] + [O^*]$$
 (A16)

Since $r_6 = r_7$,

$$\begin{aligned} \mathbf{P}^{(\mathbf{P})} &= \frac{k_{6}[^{*}\mathbf{O}\mathbf{H}]^{2}}{k_{7}[\mathbf{CO}^{*}]} = \frac{(K_{2}K_{3}K_{4}k_{5})^{2/3}k_{6}^{1/3}}{K_{1}^{1/3}(2)^{2/3}k_{7}} \frac{(\mathbf{P}_{02}\mathbf{P}_{H_{2}\mathbf{O}})^{2/3}}{\mathbf{P}_{C\mathbf{O}}^{1/3}}[*] \\ &= \gamma \frac{(\mathbf{P}_{02}\mathbf{P}_{H_{2}\mathbf{O}})^{2/3}}{\mathbf{P}_{C\mathbf{O}}^{1/3}}[*] \end{aligned}$$
(A17)

where

$$\gamma = \frac{(K_2 K_3 K_4 K_5)^{2/3} k_6^{1/3}}{K_1^{1/3} (2)^{2/3} k_7} \tag{A18}$$

The site balance can be also expressed as the following:

$$\begin{split} [L] &= [*] + K_1 P_{CO}[*] + K_2 P_{O_2}[*] + K_3 P_{H_2O}[*] + \beta \frac{(P_{O_2} P_{H_2O})^{2/3}}{P_{CO}^{1/3}} \\ &\times [*] + \delta (P_{CO} P_{O_2} P_{H_2O})^{1/3}[*] + \gamma \frac{(P_{O_2} P_{H_2O})^{2/3}}{P_{CO}^{1/3}} [*] \end{split}$$
(A19)

Therefore,

$$[*] = \frac{[L]}{1 + K_1 P_{CO} + K_2 P_{O_2} + K_3 P_{H_2O} + \beta \frac{(P_{O_2} P_{H_2O})^{2/3}}{P_{CO}^{1/3}} + \delta (P_{CO} P_{O_2} P_{H_2O})^{1/3} + \gamma \frac{(P_{O_2} P_{H_2O})^{2/3}}{P_{CO}^{1/3}}$$
(A20)

Substituting Eq. (A20) in Eq. (A10)

$$r_{\rm CO_2} = \frac{\alpha (P_{\rm CO} P_{\rm O_2} P_{\rm H_2O})^{2/3}}{[1 + K_1 P_{\rm CO} + K_2 P_{\rm O_2} + K_3 P_{\rm H_2O} + \beta \frac{(P_{\rm O_2} P_{\rm H_2O})^{2/3}}{P_{\rm CO}^{1/3}} + \delta (P_{\rm CO} P_{\rm O_2} P_{\rm H_2O})^{1/3} + \gamma \frac{(P_{\rm O_2} P_{\rm H_2O})^{2/3}}{P_{\rm CO}^{1/3}}]^2}$$
(A21)

Appendix B. Supplementary data

Discussion on the CO oxidation kinetics corruptions imposed by H_2O condensation and concomitant mass transfer limitations inside the γ -Al₂O₃ pores; TEM images and Au cluster size distribution for the untreated and thermally-treated Au/Al₂O₃ samples; kinetic parameters obtained from nonlinear fitting to Eq. (1) of rate data measured with Au/Al₂O₃; kinetic dependence of CO oxidation turnover rates on CO pressure and O₂ pressure measured with the thermally treated Au/Al₂O₃ catalysts; and examples of alternate CO oxidation pathways, the derived kinetic expressions and the corresponding parity plots for the kinetic data measured with Au/Al₂O₃ (288 K; 0.80–8.25 kPa CO; 0.25–7.15 kPa O₂; 0.03–1.15 kPa H₂O). Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jcat.2011.09.015.

References

- G.C. Bond, C. Louis, D.T. Thompson, Catalysis by Gold, Imperial College Press, London, 2006.
- [2] B.K. Min, C.M. Friend, Chem. Rev. 107 (2007) 2709.
- [3] T. Ishida, M. Haruta, Angew. Chem. Int. Ed. 46 (2007) 7154.
- [4] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16 (1987) 405.
 [5] M.C. Kung, R.J. Davis, H.H. Kung, J. Phys. Chem. C 111 (2007) 11767.
- [6] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, J.
- Catal. 197 (2001) 113.
- [7] G.C. Bond, D.T. Thompson, Gold Bull. 33 (2000) 41.
- [8] C.J. Jia, Y. Liu, H. Bongard, F. Schüth, J. Am. Chem. Soc. 132 (2010) 1520.
- [9] V. Aguilar-Guerrero, B.C. Gates, Catal. Lett. 130 (2009) 108.
- [10] M. Daté, M. Haruta, J. Catal. 201 (2001) 221.
- [11] F. Gao, T.E. Wood, D.W. Goodman, Catal. Lett. 134 (2010) 9.
- [12] P. Landon, J. Fergusson, B.E. Solsona, T. Garcia, S. Al-Sayari, A.F. Carley, A.A. Herzing, C.J. Kiely, M. Makkee, J.A. Moulijn, A. Overweg, S.E. Golunski, G.J. Hutchings, J. Mater. Chem. 16 (2006) 199.
- [13] H. Liu, A.I. Kozlov, A.P. Kozlova, T. Shido, Y. Iwasawa, Phys. Chem. Chem. Phys. 1 (1999) 2851.
- [14] M. Daté, M. Okumura, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43 (2004) 2129.
- [15] F. Boccuzzi, A. Chiorino, J. Phys. Chem. B 104 (2000) 5414.

- [16] C.K. Costello, J.H. Yang, H.Y. Law, Y. Wang, J.N. Lin, L.D. Marks, M.C. Kung, H.H. Kung, Appl. Catal. A: Gen. 243 (2003) 15.
- [17] Z. Wu, S. Zhou, H. Zhu, S. Dai, S.H. Overbury, J. Phys. Chem. C 113 (2009) 3726.
- [18] W.C. Ketchie, M. Murayama, R.J. Davis, Topics Catal. 44 (2007) 307.
- [19] K. Qian, W. Zhang, H. Sun, J. Fang, B. He, Y. Ma, Z. Jiang, S. Wei, J. Yang, W. Huang, J. Catal. 277 (2011) 95.
- [20] H.H. Kung, M.C. Kung, C.K. Costello, J. Catal. 216 (2003) 425.
- [21] V. Aguilar-Guerrero, B.C. Gates, J. Catal. 260 (2008) 351.
- [22] C.K. Costello, M.C. Kung, H.S. Oh, Y. Wang, H.H. Kung, Appl. Catal. A: Gen. 232 (2002) 159.
- [23] S.T. Daniells, A. Overweg, M. Makkee, J.A. Moulijn, J. Catal. 230 (2005) 52.
- [24] S.D. Lin, M. Bollinger, M.A. Vannice, Catal. Lett. 17 (1993) 245.
- [25] M.A. Bollinger, M.A. Vannice, Appl. Catal. B: Environ. 8 (1996) 417.
- [26] C.G. Long, J.D. Gilbertson, G. Vijayaraghavan, K.J. Stevenson, C.J. Pursell, B.D. Chandler, J. Am. Chem. Soc. 130 (2008) 10103.
- [27] D.G. Barton, S.G. Podkolzin, J. Phys. Chem. B 109 (2005) 2262.
- [28] M. Ojeda, E. Iglesia, Chem. Commun. (2009) 352.
- [29] M. Ojeda, E. Iglesia, Angew. Chem. Int. Ed. 48 (2009) 4800.
- [30] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373.
- [31] A.D. Allian, K. Takanabe, K.L. Fujdala, X. Hao, T.J. Truex, J. Cai, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 113 (2011) 4498.
- [32] C.K. Costello, J. Guzman, J.H. Yang, Y.M. Wang, M.C. Kung, B.C. Gates, H.H. Kung, J. Phys. Chem. B 108 (2004) 12529.
- [33] J.A. Biscardi, E. Iglesia, J. Catal. 182 (1999) 117.
- [34] J.T. Calla, R.J. Davis, Ind. Eng. Chem. Res. 44 (2005) 5403.
- [35] E. Quinet, L. Piccolo, F. Morfin, P. Avenier, F. Diehl, V. Caps, J.L. Rousset, J. Catal. 268 (2009) 384.
- [36] M. Olea, M. Tada, Y. Iwasawa, J. Catal. 248 (2007) 60.
- [37] J.T. Calla, M.T. Bore, A.K. Datye, R.J. Davis, J. Catal. 238 (2006) 458.
- [38] T.V. Choudhary, C. Sivadinarayana, C.C. Chusuei, A.K. Datye, J.P. Fackler, D.W. Goodman, J. Catal. 207 (2002) 247.
- [39] E. Quinet, F. Morfin, F. Diehl, P. Avenier, V. Caps, J.L. Rousset, Appl. Catal. B: Environ. 80 (2008) 195.
- [40] Z.P. Liu, P. Hu, A. Álavi, J. Am. Chem. Soc. 124 (2002) 14770.
- [41] A. Bongiorno, U. Landman, Phys. Rev. Lett. 95 (2005) 106102.
- [42] C.R. Chang, Y.G. Wang, J. Li, Nano Res. 4 (2011) 131.

- [43] M. Neurock, A. Wieckowski, Adv. Phys. Chem., in press.
- [44] M. Boudart, G. Djéga-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions, Princeton University Press, Princeton, 1984.
- [45] C. Shang, Z.P. Liu, J. Phys. Chem. C 114 (2010) 16989.
- [46] N. Lopez, J.K. Norskov, J. Am. Chem. Soc. 124 (2002) 11262.
- [47] M. Mavrikakis, P. Stoltze, J.K. Norskov, Catal. Lett. 64 (2000) 101.
- [48] T. Yan, J. Gong, D.W. Flaherty, C.B. Mullins, J. Phys. Chem. C 115 (2011) 2057.
- [49] B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, R.J. Behm, J. Catal. 224 (2004) 449
- [50] D. Widmann, Y. Liu, F. Schüth, R.J. Behm, J. Catal. 276 (2010) 292.
- [51] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, J. Catal. 144 (1993) 175.
- [52] G. Li, J. Edwards, A.F. Carley, G.J. Hutchings, Catal. Today 114 (2006) 369.
- [53] M. Okumura, Y. Kitagawa, K. Yamaguchi, T. Akita, S. Tsubota, M. Haruta, Chem. Lett. 32 (2003) 822.
- [54] B. Chowdhury, J.J. Bravo-Suarez, N. Mimura, J. Lu, K.K. Bando, S. Tsubota, M. Haruta, J. Phys. Chem. Lett. 110 (2006) 22995.
- [55] C. Sivadinarayana, T.V. Choudhary, L.L. Daemen, J. Eckert, D.W. Goodman, J. Am. Chem. Soc. 126 (2003) 38.
- [56] B. Taylor, J. Lauterbach, G.É. Blau, W.N. Delgass, J. Catal. 242 (2006) 142.
- [57] P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Chem. Commun.
- 18 (2002) 2058. [58] C. Rossignol, S. Arrii, F. Morfin, L. Piccolo, V. Caps, J.L. Rousset, J. Catal. 230 (2005) 476.
- [59] J. Jiang, S.M. Oxford, B. Fu, M.C. Kung, H.H. Kung, J. Ma, Chem. Commun. 46 (2010) 3791.
- [60] L. Piccolo, H. Daly, A. Valcarcel, F.C. Meunier, Appl. Catal. B: Environ. 86 (2009) 190.
- [61] M. Shou, H. Takekawa, D.Y. Ju, T. Hagiwara, D.L. Lu, K.I. Tanaka, Catal. Lett. 108 (2006) 119.
- [62] S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7 (2008) 333.
 [63] R.H. Nibbelke, M.A.J. Campman, J.H.B.J. Hoebink, G.B. Marin, J. Catal. 171
- (1997) 358.
- [64] J. Bergeld, B. Kasemo, D.V. Chakarov, Surf. Sci. 495 (2001) L815.
- [65] P. Panagiotopoulou, D.I. Kondarides, Catal. Today 112 (2006) 49.